Repeated interaction in standard setting

Pierre Larouche (TILEC, Tilburg Law School, Tilburg University) Florian Schuett (TILEC, CentER, Tilburg University)

LCII-TILEC Conference on Standard Setting

Brussels, 29 May 2017

Standard setting and holdup

- The adoption of standards can be welfare enhancing for various reasons (network effects, duplication, coordination...)
- Standard setting organizations (SSOs) decide which technologies to include in a standard
- There is a concern that standardization may give rise to holdup:
 - In the absence of a standard, technology competition would hold license fees in check
 - The standard picks one technology to be the winner and eliminates alternatives; the associated patent becomes standard essential
 - This can lead to higher royalties and thus downstream prices than under *ex ante* licensing
- SSOs have responded by imposing FRAND commitments, but their effectiveness has been questioned

Two important features of standard setting

Repeated interaction

- Many standards evolve through several generations
- Example: mobile telephony, 2G/3G/4G...
- Often the same firms are involved in each generation

Complementarities

- Standards often combine several complementary technologies
- Demand for one contributor's licenses is decreasing in royalties of others
- (This is the source of the royalty stacking problem)

Main idea of the paper

- The combination of repeated standard-setting and complementarity between technologies may alleviate holdup:
 - Technology contributors have an interest in keeping royalty rates of other contributors low
 - They may be able to discipline contributors by excluding them from future generations of the standard
- We develop a stylized model of repeated standard setting: with some probability there will be another generation of the standard
- When can we sustain "fair, reasonable and non-discriminatory" (FRAND) royalties in equilibrium?
- How do procedural rules of SSO affect sustainability of FRAND royalties?

Outline

2 Analysis

- Benchmark: a single round of standard setting
- Repeated standard setting

Technologies (1)

- Standard setting takes place in several rounds $t = 1, 2, \ldots$
- After each round, probability $\delta < 1$ of a new round occurring
- Two complementary technologies:
 - A: developed by a single innovator A
 - B: developed in two versions by innovators B_1 and B_2
- A and B_i 's technologies are perfect complements (no stand-alone value) while B_1 and B_2 's are substitutes
- All three innovators are infinitely lived and develop successive improvements of their technologies
- There is a perfectly competitive downstream sector with a continuum of downstream firms

Model Analysis

Technologies (2)

- Two possible standards:
 - (A, B_1) : leads to demand $Q = v_1 p$
 - (A, B_2) : leads to demand $Q = v_2 p$

Assumption

(i) The values $(v_1 \text{ and } v_2)$ are the same in every round \rightarrow infinitely repeated game

(ii) $v_1 > v_2 \ge 0$: B_1 has the superior technology

• Define $\bar{r} \equiv v_1 - v_2$ as the FRAND rate: equilibrium royalty rate under hypothetical *ex ante* licensing (Swanson & Baumol, 2005)

The standard-setting process

• In each round t the SSO issues a call for proposals

Model Analysis

- B₁ and B₂ choose whether to submit a proposal for a standard (combining A's technology with their own)
- The SSO puts proposals to a sequential vote (random order)
- A, B_1 , and B_2 each have one vote; downstream firms have $D \ge 1$ votes
- If a proposal receives a super-majority $\gamma>1/2,$ it is adopted and process stops
- If no proposal receives a super-majority:
 - With prob. α , tie-breaker whereby a proposal is adopted at random (prob. 1/2 for each)
 - With prob. 1α , no standard is adopted (payoff zero)

In each round t:

- 1 The SSO adopts a standard $s \in \{1,2,\varnothing\}$
- 2 A and selected B firm, $B_s,$ simultaneously set royalties r_A and r_s
- 3 Downstream firms set prices and sell final product

2 Analysis

- Benchmark: a single round of standard setting
- Repeated standard setting

2 Analysis

• Benchmark: a single round of standard setting

• Repeated standard setting

Proposition

Suppose there is only one round. In any equilibrium, compared to hypothetical ex ante licensing (\rightarrow FRAND):

- the royalties charged by firm B_s and consumer prices are higher
- the profit of firm A is lower
- Intuition: standard eliminates competition between B_1 and B_2
- That A would benefit from a lower royalty on B technology is due to complementarity

2 Analysis

- Benchmark: a single round of standard setting
- Repeated standard setting

Existence of an equilibrium with FRAND royalties

- Suppose now $\delta > 0$: repeated standard setting
- Players' strategies (voting, royalties) can be conditioned on the history of play

Proposition

If δ is sufficiently large, there exists an equilibrium in which

- B₁'s technology is adopted as the standard in every round and
- B_1 charges FRAND royalties $(r_1 = \bar{r})$,

provided SSO rules permit effective punishment for deviations.

- Temptation for B_1 to deviate and charge $r_1 > \bar{r}$
- Must be dissuaded by threat of punishment: A votes against B_1 and in favor of B_2 for a number of rounds
- Effectiveness of punishment: likelihood of excluding B₁

Super-majority requirements

Proposition

A necessary condition for effective punishment is that the SSO's super-majority is sufficiently stringent: $\gamma > (1+D)/(3+D)$.

Model Analysis

- If $\gamma \leq (1+D)/(3+D)$, the votes of B_1 and the downstream firms are enough to adopt B_1 , even if A and B_2 vote against
- Thus, B_1 cannot be punished, and FRAND royalties cannot be sustained

 Model
 Benchmark: a single round of standard setting

 Analysis
 Repeated standard setting

Tie-breaker use The case of a single punishment period, for $v_1 = 1$

Figure : The critical discount factor δ^* as a function of α and v_2

The effects of tie-breaker use depending on v_2

Model Analysis

- Tie-breaker use has ambiguous effects on δ^* :
 - Not using a tie-breaker enhances effectiveness of punishment...
 - ...but also makes punishment more costly for \boldsymbol{A}
- Case where v_2 is close to v_1 is noteworthy:
 - That's when the hold-up problem is most severe (FRAND rate is low)
 - In that case, an SSO rule that discards proposals which have not received a super-majority (no tie-breaker) makes FRAND royalties easiest to sustain

SSO rules in practice

Our results can provide a rationale for the prevalence of certain procedural rules used by SSOs in practice:

• Super-majority requirements (Baron & Spulber, 2015)

Model Analysis

 Rules to remove rejected proposals from consideration instead of entering them into a tie-breaker (Bonatti & Rantakari, 2016)

Top 10 SEP holders for mobile communications standards

2G (GSM) ^a	2.5G (GPRS) ^b	3G (UMTS) ^c	4G (LTE) ^d
Nokia: 1456	Qualcomm: 517	Qualcomm: 2799	InterDigital: 808
Motorola: 1116	Ericsson: 514	InterDigital: 2337	Qualcomm: 524
Ericsson: 843	Motorola: 451	Motorola: 1961	Samsung: 322
InterDigital: 675	Siemens: 100	Nokia: 1631	Ericsson: 315
Qualcomm: 422		Philips: 529	Motorola: 293
Philips: 175		Siemens: 421	Huawei: 281
Nokia Siemens Networks: 164		Huawei: 380	ZTE: 235
		Ericsson: 349	NTT: 212
Alcatel: 88		NEC: 208	LG: 208
Siemens: 69		Nokia Siemens Net- works: 180	Nokia: 197
Toshiba: 62			

Source: Disclosed Standard Essential Patents (dSEP) Database (Bekkers et al., 2012).

^a: ETSI project GSM.

^b: ETSI project GPRS.

^c: Includes ETSI projects UMTS, UMTS/CDMA, UMTS FDD, UMTS Release 99, UMTS Release 4, UMTS Release 5, UMTS Release 6, UMTS Release 7, UMTS Release 8, UMTS Release 9, WCDMA, and TD-SCDMA. ^d: Includes ETSI projects LTE, LTE Release 8, LTE Release 9, LTE Release 10, HSPA+, HSUPA, and E-UTRA.

Conclusion

- Standard setting creates essentiality, which may lead to holdup
- However, when standards evolve through several generations, there is repeated interaction
- Contributors of complementary technology want to keep royalties low: prevent holdup
- They can discipline owners of standard-essential patents by threatening to exclude them from future rounds
- SSOs can support this through appropriate procedural rules:
 - super-majority requirements
 - rules governing the use of tie-breakers
- European Commission's horizontal guidelines:
 - Openness, transparency, non-discriminatory distribution of voting rights: in line with our results
 - "Objective criteria" = technological superiority? Would make punishment harder